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These notes are written for the neuroscience reading group at the LMB, and are therefore aimed
at biologists, with a less quantitative background. Some topics within Dayan and Abbott will be
mathematically tricky for these readers, so my intention here is to give an overview of many of the
topics covered to make things more digestible. Focus is therefore on understanding concepts broadly
and how they relate to actual neurobiology, without getting too bogged down in derivations. That
said, some familiarity with linear algebra, multivariate calculus and probability theory are still pre-
requisites for this. If you need a reference for these, I would highly recommend the first half of the
textbook Mathematics for Machine Learning. The appendix of Dayan and Abbott is also a fantastic
resource.

The book is split into three main sections. In the first section, we look at how neurons encode
information about the environment. In the second section, we look at biophysical models of neurons
such as the Hodgkin-Huxley model, and work our way up to modelling biophysically plausible neural
networks. In the final section, we look at learning, including mathematical models of plasticity, some
basic reinforcement learning, and some Bayesian inference methods.

Note that my discussion for each chapter does not follow the material in the book in order but
jumps around a little. I therefore reference the corresponding section in the book.

1 Chapter 1 - Neural Encoding I

In this chapter, we first look at neuron spike trains and firing rates, which are two different ways of
thinking about a neuron’s activity. We look at the relationship between these two forms, and how
to convert between the two. We also have a first look at neural encoding, with neuron tuning curves
and spike-triggered averages.

1.1 Spike trains and firing rates

Neurons fire action potentials at discrete points in time. If we measure a neuron’s activity in a single
trial, we end up with a list of times ti for i = 1, 2, ..., n for n spikes, called a spike train. However,
neurons don’t work with infinite precision; there is some noise inherent in the timings of these action
potentials. We therefore seek an alternate description of a neuron’s activity that describes the rate
at which it is firing, not the exact times of its spikes. The spike-count rate is the neuron’s firing rate
measured across the entire trial. For a trial of length T:

r =
n

T

The problem with this is that it doesn’t account for variation of a neuron’s firing rate within a
trial, which is an important aspect of how neurons encode information. We therefore seek a firing
rate function, that varies with time, r(t). This function is an abstraction that is a very useful way to
think about neural activity given that spike trains are necessarily stochastic. We can think of it as
being the same as the spike-count rate as above, but instead of considering the entire trial, we bin the
trial into small windows of length ∆t. We can then think of the function r(t) as being the firing rate
in the window t to t+∆t, ie., the number of spikes in this window divided by ∆t. This is not very
useful if we are only considering one spike train, but if we perform the same recording across many
trials, we can average their results to get a good description of a neuron’s activity. Furthermore, the
more trials we have, the smaller we can make the window ∆t, and the more precise of firing rate
function becomes.
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If we let the window size get infinitely small, then each window either catches a spike, or it
doesn’t. In this case, the firing rate is zero everywhere, apart from at the exact locations of a spike,
at which it is infinite. The function that describes this is the dirac delta function δ(t). This function
has the important property that it integrates to 1, and can therefore be used to ’pick out’ values of
a continuous function from inside an integral:∫

dt′δ(t− t′)f(t′) = f(t)

We can now represent our spike train as a continuous function ρ(t), rather than just a set of
spike times, given by:

ρ(t) =

n∑
i=1

δ(t− ti)

For clarity, ρ(t) is the particular function that we measure when recording a neuron’s spiking
activity. This is generated stochastically from the true underlying firing rate r(t), which doesn’t
spike but gives a varying firing rate over time.

We now need to look at how to convert between these two representations of a neuron’s activity
- ie, how to estimate r(t) from a set of measured spike trains ρ(t), and additionally, how to sample
a spike train from a firing rate function.

1.2 Spike train smoothing

If we could record an infinite number of trials, then our simple window method above would converge
to the true firing rate as the window size gets infinitely small. In practise, however, we generally
need to estimate the firing rate from a finite number of trials. To do this, we smooth out our set
of spike trains by performing a convolution with a window function w(τ). A convolution refers to
the process of integrating our function of interest with a small sliding window function, sometimes
called a kernel, as follows:

r(t) ≈
∫ ∞

−∞
dτw(τ)ρ(t− τ)

If you think carefully about this equation, you see that at time t, we centre our window function
at t, then compute the values of the window function at all neighbouring spikes, and add their
values to give an estimate of the firing rate, as shown below. Also note that in practise, you can
average this method over many trials where you have recorded the same neuron to get better results.
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r(5) ≈ 0.02 + 0.05 + 0.35 + 0.40 + 0.13 + 0.05

≈ 1Hz

Since our Gaussian window function varies smoothly, the effect is to smooth out the firing rate
function. Smoothing the firing rate captures the fact that a spike train is generated stochastically
from the firing rate - the smoother we make it, by widening the window width, the more we get a
general rate, and the less the precise spike timings matter. The effects of using different window
functions is shown in Figure 1.4 in the book.

1.3 Poisson processes

Having seen how we can estimate the firing rate from a set of recorded spike trains, we also want to
consider how spike trains are actually generated from a given firing rate function.

First of all, note that we can easily calculate the mean number of spikes in a trial, as follows:

E[N ] =

∫ T

0

r(t)dt

= rT if r constant

However, this tells us nothing about the distribution of spikes around this mean rate. The most
basic way to generate spikes is to use a Poisson process. Consider the probability of there being a
spike in the window t to t+∆t. As ∆t → 0, the probability of there being 2 or more spikes in this
box falls to 0, so we only need to consider the possibility of there being 0 or 1 spikes in this box.
This is just a coin flip, or Bernoulli trial, with the probability of there being a spike being given by
P (spike) = r(t)∆t. Computationally, you could simulate a spike train by splitting your trial into a
finite set of small boxes of size ∆t, and putting a spike in each box with this probability.

In the case of a homogeneous firing rate - that is, one that is constant for the whole trial, we can
say a bit more about the distribution of the number of spikes in a trial. This is done by counting
all the different ways we can get n spikes in a finite set of boxes in a trial using combinatorics,
and adding their probabilities, then letting our box sizes tend to zero, while using something called
Sterling’s approximation to give the following nice result:

P [N = n] =
(rT )n

n!
exp(−rT )

Which is the Poisson distribution with mean rT .

An issue with this simplified model is that we assume the probabilities of a spike being in any
bin is independent of the probability of a spike being in any other bin. This is obviously false, and
the most major way this is violated is due to a neuron’s refractory period - that is, if it spikes, the
immediately following bins are extremely unlikely to also spike, regardless of how high the firing
rate is. More complex models are able to incorporate a refractory period - in particular, the book
discusses methods that sample interspike intervals to generate spike trains. For the homogeneous
poisson process, the interspike interval follows an exponential distribution (the derivation in the
book is quite straightforward), but this can be modified to a gamma distribution, which can make
it almost impossible for a neuron to spike in the refractory period following a different spike.
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1.4 Tuning curves

So far, we’ve only considered a neuron’s activity in isolation. We now being our exploration of how
a neuron can encode information about a stimulus. Chapter 1 really only makes a cursory first pass
at this, but it gives a good flavour of what’s to come.

First of all we consider the concept of a tuning curve. Tuning curves capture the relationship
between the values of a stimulus and the mean firing rate of a neuron that encodes this stimulus.
They are therefore a useful way of characterising the selectivity of a neuron to sensory information.

Here, we make the simplification that a neuron only encodes information via its mean firing rate
- ie, there is no temporal encoding of information, only < r > matters. We consider a parameterised
stimulus s. For example, the book shows a moving bar in Figure 1.5(A) with its angle of rotation as
the parameter of the stimulus. We then simply hold this parameter constant and record the neuron’s
activity, and calculate its mean firing rate over a trial of given duration. We can vary the value of
the parameter(s) across different trials, to build up a picture of how the mean firing rate varies as
the stimulus varies. We can then perform any type of curve fitting we want to this dataset to obtain
a tuning curve.

This is a useful but slightly limited thing to do. It tells us nothing about how a neuron’s activity
varies around its mean firing rate. Some of this information could be very useful - for example,
think of a neuron in an oscillatory system; information could certainly be encoded in the frequency
of its response. A tuning curve would assign the same response to neurons with wildly different
oscillating frequencies and would completely miss this encoding. It also can’t account for temporal
changes in parameters of the stimulus during a trial. Furthermore, many natural stimuli would be
almost impossible to effectively parameterise - it therefore only really applies to simple stimuli such
as gratings for vision.

1.5 Spike-triggered average

Another fundamental concept is the spike-triggered average. This is a way of characterising what
type of stimulus is most likely to drive a spike. At present we will just define what a spike-triggered
average actually is; justification for why this is useful comes in the next chapter when we study
receptive fields, which essentially encompass these ideas and tuning curves.

At present, we once again have a parameterised stimulus, which we now allow to vary with with
time, s(t). We won’t worry exactly how it varies - this will be considered in the next chapter. All
we need to do to compute the spike-triggered average, is to record a neuron’s activity alongside this
varying stimulus in a trial. We then pick a window of finite time, and take the mean of the changing
stimulus across all the windows preceding all spikes in the recording. We then average this result
over any trials. This is described by the following equation:

C(τ) = ⟨ 1
n

n∑
i=1

s(ti − τ)⟩

Equation (1.20) also covers the integral forms of this equation in terms of ρ(t) and r(t). It’s
actually really useful to look at these to check your understanding of our previous discussion on
firing rates vs spike trains. Below also shows a visual representation of the spike-triggered average.
All we do is take the stimulus in the windows preceding each spike, as shaded, and average them,
to obtain C(τ).

0 1 2 3 4 5 6 7 8 9 10

s(t)

Time (s)
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2 Chapter 2 - Neural Encoding II

In this chapter, we study neuron receptive fields and reverse-correlation techniques in detail. That
is, we build models that can predict a neuron’s activity given an arbitrary time-varying stimulus.
These models work well for neurons in the early visual system, which is therefore discussed in detail.
In the notes, I try to simplify the explanation of what reverse-correlation techniques are, but do
not delve into all the examples of different types of receptive fields given in the notes, as the book
describes these far better than I could in the notes.

2.1 Correlation functions

Before discussing reverse-correlation techniques, we need to briefly clarify some concepts from chap-
ter 1.

To measure how much two functions correlate, we can multiply them and integrate over all of
time. If both functions correlate, then we expect this integral to be positive, since when one function
is positive, we expect the other function to also be positive, so they multiply to a positive number,
and when one function is negative, we expect the other function to be negative, so they also multiply
to give a positive. If this integral is negative, it means that on average the functions have opposing
signs, and if the integral is zero, then they are uncorrelated - the value of one function tells us
nothing about the value of the other function.

Say we want to compute how much the firing rate of a neuron correlates with a stimulus over
the course of a trial. We are interested in the correlation of the neuron’s activity with the stimulus
at the same point in time, but also the correlation of the firing rate with values of the stimulus
preceding the neuron’s activity, since the neuron is influenced by the stimulus over a window of time
prior to it responding. Therefore, we perform this correlation over successive shifts of the stimulus
in time, and record the value as a function of this shift, rather than a single value, like so:

Qrs(τ) =
1

T

∫ T

0

dtr(t)s(t+ τ)

0 1 2 3 4 5 6 7 8 9 10

s(t+ τ)

r(t)

×

τ = 1s Time (s)

We note the relationship here to the spike-triggered average. For the spike-triggered average, we
average the stimulus in a window preceding each spike. Here, we average the stimulus preceding the
firing rate, weighted by the firing rate. You see that they are essentially equivalent, since the firing
rate is what underlies all spike trains. The only differences are that one is normalised by time, and
the other by spike count, and also, that the shift τ is defined the other way around.

Rewriting the spike-triggered average in integral form (recalling that ρ rewrites a spike train as
a continuous function):

C(τ) =
1

⟨n⟩

∫ T

0

dt⟨ρ(t)⟩s(t− τ)

=
1

⟨n⟩

∫ T

0

dtr(t)s(t− τ)

=
1

⟨r⟩Qrs(−τ)

It is also useful to define the stimulus autocorrelation function, which is the correlation of the
stimulus with itself:
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Qss(τ) =

∫ T

0

dts(t)s(t+ τ)

The following graph shows how we shift the function, multiply it by itself, and integrate over time.

0 1 2 3 4 5 6 7 8 9 10

s(t+ τ)

s(t)

×

τ = 1s Time (s)

Of particular importance is a white noise stimulus. This is a stimulus that is completely uncor-
related with itself - knowing its value at one time point tells you nothing about its value at any
other timepoint. Its autocorrelation function is therefore zero for almost all values of τ - except
for at zero, where the integral actually blows up to infinity. We represent this with a dirac delta
function, which we met when studying spike trains. This is a standard result in signal processing,
but understanding it fully requires diving into Fourier analysis, which we don’t want to do now, so
we just state that the following is the autocorrelation function for a white noise stimulus, where σs

is the signal’s power:

Qss(τ) = σ2
sδ(τ)

2.2 Reverse-correlation methods

We now have the correct toolkit to start studying how to predict a neuron’s activity given the values
of a stimulus that changes over time. This is actually a regression problem, and we will look at what
amounts to linear regression. In regular linear regression, you have a finite set of input vectors and
target values {(xi, yi)|i = 1 : n}. We want to find a weight vector w and bias b that can be used to
estimate the target from an unseen input vector as follows:

y ≈ wTx+ b

The solution will only ever be approximate as we assume there to be Gaussian noise added to
all measurements. We solve this by minimising the least squares error on our available data:

w, b = argminw,b

n∑
i=1

(yi −wTxi − b)2

In the special case of whitened input data, which means that the input data has been normalised
to have zero mean and covariance proportional to the identity matrix, the solution to this problem
is given by:

w =
1

nσ2

n∑
i=1

yixi

b =
1

n

n∑
i=1

yi

Where σ2 is the input data variance. (Note this is also tractable in the case of non-whitened
data, which is the solution you will typically see in textbooks. Also note that typically ’whitened’
also means σ2 = 1 but I keep a symmetric variance here for analogy later.)

Now, in the case of neural encoding, we want to calculate the firing rate of a neuron at time t,
r(t), given the value of the stimulus in a window leading up to the time t, as follows:
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s(t− τ)
Predict r(t) here given history of stimulus

τ (s)

Now, the best way to think about this problem is that the values of s(t−τ) in the window leading
up to the time t at which we want to predict the firing rate form the input vector for our linear regres-
sion, and r(t) itself forms the target scalar. It may seem strange that we are referring to a function as
a vector, however, this is actually very common. You should think of the vector s as being labelled
by a continuous variable τ , so it has continuously many components, compared to a column vector
x which is discretely labelled. Additionally, t takes the place of the index i in the linear regression
problem - where before, we had a discrete number of input vectors and targets, here we use the con-
tinuously indexed r(t) as targets with the stimulus values in the window leading up to t as the input
vectors. So there are two senses in which we have extended linear regression to a continuous domain.

xi → s(t− τ)

yi → r(t)

i → t

τ → column index of x

Many equations from the discrete case can be translated into the continuous case by replacing
the appropriate sum over the vector components with an integral over the corresponding function’s
continuous label. Therefore, a dot product between two vectors becomes an integral of the product
of the two functions. We therefore replace the weight matrix w with a function D(τ). This is
referred to as the filter.

D(τ) → w

r0 → b

The linear equation we want to solve for therefore becomes the integral of the weight function
times the stimulus function, integrated over the the stimulus’ history:

rest(t) = r0 +

∫ ∞

0

dτD(τ)s(t− τ)

And our training dataset becomes the continuous set of all such (r(t), s(t− τ)) pairs present in
the recording. Just like before, we minimise the least squares error on the training dataset, which
takes the following form:

E =
1

T

∫ T

0

dt(r(t)− rest(t))
2

Note also how the normalising constant has changed from the number of datapoints N to the
continuous length of the trial T .

Minimising this equation properly is non-trivial, and requires something called a functional
derivative from a subject called the calculus of variations. However, in this case (and definitely
don’t assume this will always be true!), our solution holds in direct analogy with standard linear
regression for the specific case of a white noise stimulus. Previously, we whitened our input data,
so that the vectors x have zero mean and symmetric variance. Here, we use a white-noise stimulus,
which is the continuous analog of this, giving the solution:

D(τ) =
1

Tσ2
s

∫ T

0

dtr(t)s(t− τ)

r0 =
1

T

∫ T

0

dtr(t)
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Now, this equation should look familiar. It is in fact, almost exactly the spike-triggered average,
with slightly different normalising constants. Substituting these gives us:

D(τ) =
⟨r⟩C(τ)

σ2
s

This is exactly why the spike-triggered average is a useful thing to calculate. It tells us the
optimal linear filter for predicting a neuron’s activity from a stimulus.

012345678910

s(t− τ)

D(τ)

× rest(t) = r0 +
∫∞
0 dτD(τ)s(t− τ)

τ (s)

The case of a non-whitened stimulus is more complex, and requires the use of Fourier analysis
to solve properly, which is beyond the scope of these notes. However, it is worth mentioning why a
whiten-noise stimulus makes this problem easier to solve. In the non-whitened case, variations of the
stimulus in a window leading up to the time at which we want to predict r(t) affect not only r(t),
but also each other. Therefore, solving the problem requires completely disentangling the internal
correlations in the stimulus, so we can see what directly caused the response, rather than what may
have indirectly caused the response through affecting the stimulus value elsewhere.

It’s also important to discuss the limitations associated with a linear model. A linear model
assumes the response of a neuron is proportional to the amount of overlap its actual stimulus has
with its most effective stimulus. We give here a graphical demonstration of what this entails.

00.511.522.533.544.55

D(τ)
Optimal stimulus

s(t− τ)
High response

s(t− τ)
Low response

τ (s)

We see here that we predict a low response when the stimulus doesn’t overlap much with the
optimal response. There is in fact no reason apriori to assume this is the case. Later in the chapter,
we discuss complex neurons which can have, for example, position-invariant responses to a visual
stimulus. A linear model could not capture such a neuron’s behaviour: shifting the stimulus in the
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visual field would cause it to no longer overlap with the optimal stimulus, and hence a linear model
would predict a low response.

We make a quick note here on non-linear models. Do not worry about this too much if you’ve
found this material difficult. The book mentions 3 ways of extending this approach to non-linear
models. First of all, it mentions the Volterra/Wiener expansion. This is the functional equivalent
of the Taylor series, which allows you to approximate many functions with a polynomial. Including
further terms in this expansion is therefore exactly equivalent to do higher-order polynomial regres-
sion

They also discuss using static non-linearities. This is where we compute exactly the same linear
filter as before, but pass the output through a pointwise non-linear function, which is optimised
to further improve our results. This is different to the full non-linear approach, because the full
non-linear approach can model how arbitrary stimuli can affect the response. In the diagram above,
both arbitrary stimuli could give high responses, for example, whereas in the static non-linearity
approach (assuming a monotonic non-linearity), these would still necessarily get mapped to low
and high responses respectively, its just the amount by which the neuron responds is modified in
a non-linear way. Finally, the book mentions the use of a non-linearity inside the integral, and in
particular, using the response tuning curve for this, so you integrate its static response over time,
and develop an optimal linear kernel for that.

Its worth mentioning that many modern approaches to neural encoding will use arbitrarily com-
plex, non-linear models such as deep-learning based approaches. For example, many deeper neurons
in the visual system can be modelled well by CNNs.

2.3 Receptive fields

Most of this chapter is concerned with the early visual system. This is because these neurons can
be well described by linear models, and are well studied.

So far, we have only studied stimuli that take scalar values. This could include, for example,
the total intensity of light in a room. Most real-world stimuli are more complex than this, however,
so we need to describe them in more complex ways. A natural extension would be to consider
vector-valued stimuli. In this chapter, however, since we are studying the visual system, we actually
consider stimuli that vary over a 2D plane, such as a 2D image. Such stimuli can be described by
their value not just over time, but over the x-,y-axes, like s(x, y, t). Fortunately, all the results from
before transfer very easily to this case. For example, the spike-triggered average is defined:

C(x, y, τ) =
1

⟨n⟩

〈
n∑

i=1

s(x, y, ti − τ)

〉
And the linear filter is defined:

L(t) =

∫ ∞

0

dτ

∫
dxdyD(x, y, τ)s(x, y, t− τ)

Where the kernel, also called the neuron’s space-time receptive field, is given by:

D(x, y, τ) =
⟨r⟩C(x, y, τ)

σ2
s

This can be used just like before to predict a neuron’s activity from a stimulus, through either the
linear or static non-linear models discussed before. The neuron’s receptive field describes the region
of sensory space, which in this case consists of 2D images, to which the neuron responds. It is more
likely to respond to stimuli similar or overlapping with its receptive field. This might be slightly
easier to conceptualise in the case of a separable receptive field, where: D(x, y, τ) = D(τ)D(x, y).
You can think of D(x, y) as being the image to which the cell is most responsive.

To give a brief descriptive summary of the approach up to this point: first of all, we compute
the spike-triggered average from a white noise stimulus, which is the mean stimulus in a window
of time preceding each spike. This stimulus varies over both time and space. This gives, up to a
constant, the optimal stimulus, ie, the stimulus that is most likely to trigger a spike. To predict a
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neuron’s activity from an arbitrary stimulus, we now simply compute the total amount of overlap
the stimulus has with the optimal stimulus, which estimates the firing rate, with the appropriate
constants.

If you’ve understood the notes up to this point, then the remainder of the chapter should be
straightforward, and perhaps more interesting as it dives into the types of receptive fields actually
found in neurons in the early visual system. I therefore don’t go into detail on this in the notes, as
the book does a much better job of this than I could. It does cover interesting topics such as the
on-centre and off-centre receptive fields of certain retinal ganglion cells and cells in the LGN, and
how neurons in the primary visual cortex can be selective to edges with certain orientations, or even
to a moving stimulus and how these receptive fields can be characterised by the linear filters we have
discussed. It also briefly covers how you can construct a complex cell which can’t be characterised
by a linear filter, from a small number of simple cells, to give cells with certain invariances that we
previously saw are impossible with a linear filter.

3 Chapter 3 - Neural Decoding

Neural decoding is the reverse of neural encoding: its goal is to construct an estimate of the stimuli,
given neural activity. This chapter begins by looking at rate-based models, where we predict static
stimuli from single-neuron or population spike-count rates. In particular, it begins with two specific
models: a single-neuron threshold test, and a vector-based model. These are highly specific to the
cells and stimuli they model, so are useful to cover, but not as informative as the development
of a generalised toolkit for neural decoding, which is what we will therefore focus on. Rate-based
decoding can in general be seen as a classification or regression task, so much of the machine
learning literature is directly relevant. We will focus on a particularly powerful approach, that of
probabilistic, Bayesian models. This framework gives a theoretically satisfying and unified approach
to the problem of rate-based decoding. We will then also discuss Fisher information, which can help
develop some intution about how a neuron encodes information about a stimulus. Finally, we will
also cover spike-train decoding methods.

3.1 Bayesian rate-based decoding

Neural decoding is essentially an inverse problem: in the context of sensory stimuli, we view the
stimulus as a cause, with neural activity as a response dependent on this cause. This means that
we can fairly directly measure this relationship in the forward direction. As we saw in chapter 1,
we can freely change a stimulus to any value we want, measure the spike-count rate of a neuron
over several trials, and then directly characterise this relationship with a tuning curve. The inverse
relationship is not directly accessible to us in the same way: we cannot fix a neuron’s response to
a set value and record all the stimuli that caused this response. We therefore need to use inverse
techniques to disentangle this relationship.

In particular, we take a probabilistic approach, where we accept from the get-go that there is
noise present in both the neural response and our measurements, and then construct optimal es-
timates of the stimulus from these noisy measurements. The toolkit used to do this is known as
Bayesian inference, and provides a unified theoretical framework for the decoding problem, and is
also an optimal decoding strategy in the presence of noise.

In the Bayesian approach, we assume a generative model of the neural response given a stimulus,
p(r|s). This is a conditional probability distribution, which is a distribution over the possible firing
rates of all the neurons being measured, given some value s of the stimulus.

Previously we studied tuning curves, which give the mean firing rate of a neuron given a stimulus.
This amounted to just fitting some parameterised curve to the measured r, s pairs, such that fθ(s) ≈
⟨r⟩. Tuning curves can take many different functional forms, as we have seen. Now all we are
doing is extending this idea to the full probability distribution of the neuron’s firing rate given a
stimulus. Often, we will use the Poisson distribution for this, which, as we saw in chapter 1, gives
a good approximation of the distribution of the spike-count rate over the course of a trial, and
has the benefit of not needing any additional parameters to fit beyond the tuning curve, as it is
characterised entirely by its mean. Other distributions are possible though; for example, you may
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come across tuning curve plus isotropic (uniform) Gaussian noise models, or models where the noise
is proportional to the mean firing rate.

p(r|s)

Stimulus value s

F
ir
in
g
ra
te

⟨r
⟩

Recall, for example, the form of the Poisson distribution, assuming independence between dif-
ferent neurons, and where each neuron a is described by a different tuning curve fa(s):

p(r|s) =
∏
a

e−fa(s)T (fa(s)T )
raT

(raT )!

To be very clear here, the term fa(s)T is the mean spike-count of neuron a given our tuning
curve, and raT is the spike-count we actually measure.

p(s|r)

Stimulus value s

F
ir
in
g
ra
te

⟨r
⟩

So our procedure at this point is to fit the parameters of a tuning curve for each neuron to the
measured data, and use this to describe a generative model that gives a distribution of firing rates
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for each neuron given a stimulus. Now the decoding task is to estimate the stimulus given the firing
rates. This is done using Bayes’ theorem, which states that the posterior distribution of the stimulus
given the firing rates is proportional to the likelihood of the firing rates given the stimulus, times
the prior distribution of the stimulus:

p(s|r) = p(r|s)p(s)
p(r)

Posterior =
Likelihood× Prior

Evidence

The prior term, p(s), represents our ’best guess’ distribution over the stimulus values before we
have any knowledge of the neural response. For example, if we know the stimulus takes value a two-
thirds of the time, and b one-third of the time, then we could set p(s = a) = 2/3 and p(s = b) = 1/3.
If no such information is available, then we typically set our prior to a uniform distribution, or some
other distribution that is relatively uninformative - typically, for relatively sensible priors, the results
won’t be affected too much.

The evidence term is calculated by marginalising over the stimulus, and acts as a normalising
constant. In full:

p(r) =

∫
dsp(r|s)p(s)

As we can see, dividing by this term just ensures that we have a well-defined probability distri-
bution, as integrals over a probability distribution must be equal to 1.

The full Bayesian approach would be to just leave things here: given a measured neural response,
we return the probability distribution over possible stimulus values given by Bayes’ theorem. How-
ever, there are cases where we require a point estimate of the stimulus, ie, a specific value of s that
we determine to be the ’best’ estimate of s given r. One method of doing this is to take the mode of
the posterior distribution - that is, the value of s that maximises the posterior distribution. This is
known as MAP estimation (maximum a posteriori). It has the benefit of us not needing to calculate
the normalising constant, which is typically analytically intractable, and can be computationally
expensive to approximate. Note that we can plug our posterior into any monotonic (always increas-
ing) function, and the MAP estimate will be identical. Typically, we therefore maximise the log
posterior, as the logarithm function has nice algebraic properties:

sMAP = argmaxs log p(r|s) + log p(s)

And we see that we can safely ignore the − log p(r) term, as it does not depend on s.

As with many optimisation problems, the solution for many models is determined by differenti-
ating the log posterior with respect to the stimulus, and setting the result to zero. This can give an
exact analytical solution for sMAP , into which we can plug in any firing rate vector r and get out
our best estimate of the stimulus that caused it. The book covers some examples of solutions where
this is the case.

The maximum likelihood (ML) approach is to give instead the stimulus that maximises log p(r|s).
This is identical to the MAP estimate, but ignores the prior, and is therefore equivalent to using a
uniform prior that is independent of s.

3.2 Fisher information

Fisher information is a measure of how much information a neuron, or population of neurons, can
carry about a stimulus. It tells us the amount of accuracy with which we can hope to decode a stimu-
lus value. It is therefore useful in the theoretical derivation of error bounds for decoding algorithms,
which are beyond the scope of these notes. However, a brief discussion of Fisher information is
helpful here as it aids our understanding of how neurons encode information. Note that a somewhat
more useful measure is given by Shannon’s mutual information, which we will discuss in the next
chapter.
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Consider, once more, the tuning curve of a neuron. Imagine that we want to decode a stimulus
value in the presence of noise. The diagram below shows the deviation of our decoding at a region
where the tuning curve is steep, and a region where the tuning curve is shallow. The key takeaway
from this section is that neurons are maximally informative about a stimulus at regions where their
tuning curve is steepest. The diagram makes this obvious, but it may be somewhat surprising at
first, as we would naively assume neurons are maximally informative where they are responding the
most.

∆s ∆s

Stimulus value s

F
ir
in
g
ra
te

⟨r
⟩

The Fisher information captures this through the term
(

∂ ln p(r|s)
∂s

)2

, where the square ensures

that it doesn’t matter if the slope is pointing up or down, and the logarithm is used for its nice
algebraic properties. This is not defined for the mean of the tuning curve as shown in the diagram
but for the entire conditional probability distribution, so we then just take the mean of this term
over the entire set of possible responses:

IF (s) =

∫
drp(r|s)

(
∂ ln p(r|s)

∂s

)2

Plugging in a value of s into the Fisher information gives us a measure of how much information
the neural response can have about the stimulus at that point.

3.3 Spike-train decoding

So far, we have only considered rate-based decoding methods. If we want to decode a time-varying
stimulus, then we need to use spike-trains. A basic statement of this problem is that we are given
as input a series of spike-times (t1, ..., tn) up to a time t, and we want to predict the stimulus value
at this time, s(t). Recall that we often describe a spike-train using a sum of dirac-delta functions to
give a continuous function ρ(τ). In the diagram below, note that τ is the time parameter we use to
describe the history of the trial so far, which we can use to predict the stimulus at the current time
point t.
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This problem is in fact almost exactly the reverse of the time-varying neural encoding problem
we met in chapter 2. However, there are a couple of crucial differences that warrant discussion.
As we’ve already discussed, in a laboratory setting, we can treat the stimulus as an independent
variable, which causes the dependent variable that is the neural response. This means we can give
the stimulus any structure we want, such as making it a white noise stimulus, which is how we solved
the encoding problem. When decoding, however, we can’t directly control the neural response, so
we have to work with whatever response we are given. Furthermore, in the time-varying case, the
direction of causation makes our problem statement quite unusual: the stimulus causes future values
of the response, yet we are trying to predict the stimulus from the response’s history. This is, of
course, only possible if the history of the stimulus provides information about the future stimulus,
as the neural response can in reality only tell us about the stimulus that caused it, not the future
stimulus.

s(t) s(t+∆t)

r(t)

Causes Predict

Causes

In the diagram above, we can only observe the response, but can use this to predict the stimulus
at a later time, as they are still correlated via the stimulus history. This does mean, however, that
spike-train decoding is impossible if the stimulus is white-noise: we require internal structure within
the stimulus.

A classic application of spike-train decoding methods would be a brain-computer interface, where
we are trying to gain information about a stimulus on the fly from neural activity. For this reason,
we talk about spike-train decoding, rather than firing rate decoding: we want to be able to form a
prediction for a single trial, as we won’t necessarily be able to record many trials to smooth over to
give the firing rate function. Additionally, note that we introduce a time lag τ0 into our decoding,
as this increases accuracy, as it allows some spikes to occur after the stimulus we are decoding, and
therefore be casued by them. However, too large a time lag would make many BCI applications
impossible.

Proceeding exactly like the encoding case, we want to form a linear estimate of the stimulus at
time t− τ0, given the entire spike-train up to the time t. This is done by integrating over the whole
trial with a kernel K(τ). Note in the equation shown, the integral is over all time, not from time
0 to infinity as you might expect. This means technically we are considering spikes after the time
t (recall τ runs backwards from time t). This can be avoided by making the kernel acausal, which
means we clamp its value to 0 for negative values of τ .
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sest(t− τ0) =

∫ ∞

−∞
dτ(ρ(t− τ)− ⟨r⟩)K(τ)

Our job is to figure out the kernel that gives the best estimate of the stimulus given the spike-
train. Just like with neural encoding, we consider a training set of trials where we measure both the
spike-trains and the stimulus, and minimise the following mean squared error over all these trials:

MSE =
1

T

∫ T

0

dt
〈
(s(t− τ0)− sest(t− τ0))

2
〉

We can’t minimise this like before, because the neural response is not white noise (it has a non-
delta autocorrelation), so the full solution requires a Fourier decomposition which is beyond the
scope of these notes. However, in the case of a low firing rate, where effects such as the refractory
period don’t matter much, our spike-trains effectively have zero auto-correlation and the solution is
very interpretable, so we briefly mention what the solution amounts to.

Recall the spike-triggered average C(τ) discussed in chapter 1. Our optimal kernel amounts to
the spike-triggered average, defined so that we consider stimuli after spikes rather than before, and
shifted an amount τ0 to the left, to account for the time lag. Our decoding procedure then just sums
up the spike-triggered average over all spikes, as shown in the figure below.

This is in fact an extremely intuitive result. If we only measured one spike, our best possible
guess for the stimulus’ future values would be the spike-triggered average following this spike. In
the presence of many spikes, we do the same thing, summing over the best possible guess provided
by each spike individually.

4 Chapter 4 - Information Theory

Previous chapters have been interested in how neural encoding occurs. This chapter is concerned
instead with what type of encoding should take place. In particular, we focus on the efficiency
of encodings in the very early visual system - that is, how can encodings be designed so that we
express as much information as possible about natural scenes. The toolkit we develop in order
to answer this question comes from Claude Shannon’s information theory, which was originally
conceived to describe electronic communication down noisy channels such as telephone wires, but is
equally applicable to neural communication channels. So we begin with an overview of information
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theory, then give a more qualitative discussion of how neurons can maximise their coding efficiency
than that presented in the book.

4.1 Information and entropy

A brief overview of probability distributions, information, and entropy by themselves is useful here
before we dive into relating these to neural responses and stimuli.

The first concept we will discuss is surprise. Imagine you toss a single unbiased coin, and the
result comes up heads. We can characterise the amount of information this result gives you using a
quantity called surprise. This is measured in bits - and the information gain from observing heads
for a coin toss is 1 bit. So a bit is by definition how much uncertainty is resolved by knowing the
outcome of an equal probability binary variable. (It’s worth noting, however, that this term is slightly
contentious - we often use ’bit’ to refer to a binary variable irrespective of whether its probability
is 50/50, such as a bit in your computer). We can extend this idea to arbitrary probabilities as
follows. Imagine that you have repeated fair coin tosses: the information gained from each coin toss
is additive. The diagram below illustrates this for 3 repeated coin tosses: the total information gain
is 3 bits, while the probability of each final outcome is 1

8 .

p = 1
2p = 1

2

Increasing surprise

p = 1
8 or surprise = 3 bits

A moments thought tells you that the surprise is related to the probability of an outcome via
the following formula:

surprise = − log2(p)

We extend this naturally to probabilities that are not powers of 2, which will lead to non-integer
values for the surprise. The surprise of an unlikely event is high, while the surprise of an unlikely
event is low. This makes sense - if you observe an event that was certain, ie, has probability one, you
have gained zero information, and the surprise is zero, while for very unlikely events, the surprise
can grow incredibly high. Surprise as a quantity has the important property that it is additive over
non-independent events. This means the information gain from independent coin tosses add up.
This can be shown easily, as independent probabilities multiply, and the logarithm of a product is
the sum of the logarithms.

While surprise is a defined for a the measurement of a single outcome, entropy is defined across an
entire probability distribution. Entropy simply tells you, on average, how surprising is a measurement
drawn from that probability distribution. We usually think of high entropy distributions as being
disordered, while low entropy distributions are ordered. This aligns with our more formal definition:
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for a very ordered distribution, the outcomes of draws are typically not very surprising, while
disordered distributions have more surprising draws on average. Entropy is also measured in bits.
Formally, the entropy of a probability distribution is given by:

H = −
∑
i

pi log2(pi)

If we go back to our binary tree example, we can graphically represent some different probability
distributions with different entropies. We see that the entropy means, on average, how far down
the tree do you traverse. For general probability distributions this idea is extended, using the same
formula, and really has the same meaning but lacks the graphical interpretability of a binary tree.

p = 1
2p = 1

2

H = 8 ∗ 1
8 ∗ 3 = 3 bits

High entropy

p = 1
2p = 1

2

H = 0.5 ∗ 1 + 0.25 ∗ 2 + 2 ∗ 0.125 ∗ 3 = 1.75 bits

Medium entropy

p = 1
2p = 1

2

H = 2 ∗ 0.5 ∗ 1 = 1 bits

Low entropy

For continuous probability distributions, we can also define the differential entropy, as:

H = −
∫

dxp(x) log2(p(x))

There are complications with continuous distributions discussed in the book in terms of having
to define a measurement accuracy. In fact, the above definition doesn’t really make sense (look at
the units - p(x) has units [x]−1, and so we’re taking a logarithm of a quantity with units, which
doesn’t make sense, and also it means a this quantity is not invariant under transformations of x).
We won’t really worry about the details of this, but it’s worth being aware of.
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Before discussing further topics within information theory such as mutual information, we will
quickly review multivariate probability distributions. A probability distribution can be defined over
more than one variable. P (x, y) is the joint probability that the first variable takes value x, and the
second variable takes value y. Such probability distributions are normalised, such that:∑

x,y

P (x, y) = 1

We define the marginal probability distribution over x as the distribution that we get if we don’t
care about measuring the y values - so we sum over all possible y values we could measure:

P (x) =
∑
y

P (x, y)

Additionally, we define the conditional probability distribution as the distribution over x, given
that we know the value of y:

P (x|y) = P (x, y)

P (y)

The denominator ensures that this is a correctly normalised probability distribution in the vari-
able x, so that

∑
x P (x|y) = 1.

In general, x and y are dependent. This means knowing the value of one of them tells us
something about the other. Independence is when they tell us nothing about the other, and so:

P (x, y) = P (x)P (y)

Or equivalently:

P (x|y) = P (x)

We can now develop our notion of entropy further for multivariate distributions. In general,
we want to quantify how much does knowing variable y tell us about variable x. Entropy comes
in handy here. It could be that, without knowing y, the distribution over x is very disordered; it
has high average surprise. However, knowing y could make the distribution over x very ordered.
This would mean that y is very informative about x, and that these two variables have high mutual
information. We will formally define these notions now.

First of all, we define the full entropy for the joint distribution, which tells us the average
information we gain by measuring both variables together:

H(X,Y ) = −
∑
x,y

P (x, y) log2 P (x, y)

We can also define the entropy of a single variable, ignoring the value of the other variable, via
its marginal distribution, which tells us the information we gain if we measure this variable, ignoring
the other variable:

H(X) = −
∑
x

P (x) log2 P (x)

We can also consider the the entropy of the conditional distribution. This tells us the average
information we gain by measuring the variable x, given that we know the value of y. Note this would
in general be a function of the value of y we measure. We therefore take the expectation over y,
which gives what is known as the conditional entropy:

H(X|Y ) = −
∑
y

P (y)
∑
x

P (x|y) log2 P (x|y)

= −
∑
x,y

P (x, y) log2 P (x|y)

Note that all the various ways of relating full, conditional, and marginal probabilities also apply
to these entropies, however, the logarithm turns multiplication/division into addition/subtraction.
For example:
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H(X,Y ) = H(Y ) +H(X|Y )

A particularly important quantity is the mutual information between two variables. This is
defined as the reduction in uncertainty about one variable that is obtained by knowing the value
of the other. Our initial uncertainty in x, without knowing y, is just given by the unconditional
entropy on x H(X), while the uncertainty if we do know y is given by H(X|Y ). The conditional
entropy H(X|Y ) essentially defines a limit on how much certainty we can have about X by knowing
Y - even in the presence of complete knowledge of y there is still inherent noise in the variations of
x. It is therefore sometimes defined as the noise entropy. The mutual information is therefore:

I(X;Y ) = H(X)−H(X|Y )

Note this is symmetric in X and Y (try to prove this!). It is also non-negative, as the conditional
entropy is always less than the full entropy, and equals zero only when x and y are independent.
You can interpret the mutual information as a measure of the mutual dependence between the two
variables, or how much knowing one tells us about the other.

The following diagram captures all the useful relationships (areas add or subtract):

4.2 Neural information

We are now ready to apply our knowledge of information theory to study neural encodings. Some
of the mathematics in this chapter gets particularly hard, however, the key concepts are actually
quite interpretable, so even more so than in previous chapters our discussion will be quite qualitative.

We will consider neurons that use a rate-based encoding to describe their stimulus, meaning they
are described by a continuous variable (see the discussion in the book on how our measurement pre-
cision of this variable affects the entropy). This neuron encodes a stimulus via its tuning curve (with
noise), which gives a conditional probability distribution of the form p[r|s], where E[r|s] = f(s), the
tuning curve. We seek to answer the question: what type of tuning curve should the neuron have? In
general, neurons of course encode in a way that can solve a variety of problems. A good framework
with which to view neural encodings early in the processing chain, such as retinal ganglion cells and
cells in the LGN for vision, is to consider them as forming a noisy channel down which we want to
send as much information as possible to the primary visual cortex where more complex processing
can occur. We therefore take an information-theoretic perspective, in which we want these neurons
to express as much information as possible about visual stimuli in their responses. This perspective
is quite successful at describing the operation of the early visual system.

We therefore seek an encoding that maximises the mutual information between the response
and the stimulus. First of all we will consider the marginal distribution over the response, p(r).
Regardless of the stimulus, we can already describe what this should look like. We want this
distribution to be as disordered as possible - if every measurement from it is as surprising as possible,
then the information we gain from each measurement is as high as possible. This means it should
be an entropy maximising distribution. Compare this with the opposite extreme: if our distribution
always gives us the same response r, so it has zero entropy, then we gain no inofrmation at all
by measuring r! So we must maximise the entropy of p(r) subject to some constraints (without
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constraints we would try to use all real numbers up to infinity to maximise the entropy). Below we
list some common constraints and their corresponding entropy maximising distributions.

• Maximum firing rate rmax: The distribution is a uniform distribution between 0 and rmax.

• Fixed mean firing rate ⟨r⟩: The distribution is the exponential distribution p(r) = 1
⟨r⟩e

−r/⟨r⟩.

• Fixed mean and variance: The distribution is the Gaussian distribution p(r) = 1√
2πσ2

e−(r−µ)2/2σ2

.

The marginal distribution over stimuli is given to us by nature: we have no control over it. The
idea of an information maximising encoding is to find an appropriate conditional distribution p(r|s)
which maps this given stimulus distribution to the entropy maximising distribution (recall p(r|s) is
essentially the tuning curve plus noise). The mapping that acheives this has an interesting property:
it is area preserving. This means that we encode stimuli with a precision proportional to their likely
occurrence: very likely stimuli are encoded with high precision, while unlikely stimuli are encoded
with low precision. This is a very intuitive result, and can be seen in the diagram below (for the
maximum firing rate constraint).

s

p
(s
)

r

p
(r
)

So our distribution satisfies the relationship p(r)∆r = p(s)∆s, or equivalently, the tuning curve

satisfies the relationship df
ds = p(f(s))

p(s) . The main takeaway to remember here is we want an encoding

that makes our stimulus into essentially a white noise response.

For populations of neurons, it’s fairly obvious that different neurons must encode different things
to maximise the amount of information they represent. In the information maximisation paradigm,
we take this to the extreme, and assert that the responses of any two neurons must in fact be com-
pletely independent of each other, so there is no redundancy in their encoding. This means the full
distribution over all neurons fully factorises: p(r) =

∏
a p(ra). This makes sense: if any neurons

are correlated in their responses, then measuring one tells us information about the others, which
reduces the amount of information we can gain from actually measuring the others. The informa-
tion maximisation approach is of course not true for deeper processing stages: we often end up with
highly redundant encodings for a multitude of reasons, but it does provide a good description of the
early visual system.

So far we have only considered the spike-count rate of neurons and populations of neurons,
however, our discussion applies as well to firing rate based encodings. For the early visual system,
we know that retinal and LGN cells are spatially distributed (and follow a retinotopic map) and can
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thus be described by their locations. We can use the linear filters from chapter 2 to predict their
responses over both time and space to arbitrary stimuli:

L(a, t) =

∫ ∞

0

dτ

∫
dxD(x− a, τ)s(x, t− τ)

Here, a represents the position of, say, the retinal ganglion cell we are considering, so we have
an array of cells that respond differently based on their location to a stimulus that also varies over
space and time. Now, just like before, this code will maximise its information about the stimulus
if different neural responses are completely uncorrelated and the distributions over their individual
responses are entropy maximising. A type of response that approximates these criteria is white noise
(this satisifies the first but not necessarily the second criterion). So our approach is to design a filter
such that the cells are responding like white noise. Much like TV static, knowing the response of one
cell at one time should tell you nothing about the responses of any other cells at any other times.
The book describes how this is done in stages in the visual system: retinal ganglion cells are well
described as a white-noise response spatially, but are correlated with themselves in time, and then
cells in the LGN further whiten the response in the temporal domain.

We’ve seen how white noise has a dirac delta autocorrelation function. We haven’t discussed
the well-known fact that the Fourier transform of white noise is flat. If you are unfamiliar with the
Fourier transform, I would recommend reading the appendix, but for the purpose of this discussion,
you just need to know that it is a way of representing any signal in terms of the individual frequency
components that make it up. White noise consists of equal mixtures of all frequencies.

We will also use the convolution theorem to reinterpret what the linear filter above actually does.
The neural response is defined as the convolution of the stimulus with a filter, which means we can
interpret the function of this filter very straightforwardly by thinking in frequency space. The signal
is composed of some distribution over all frequencies, and the filter simply weights these frequencies
to produce the response, as shown in the diagram below.

ResponseL̃(k, ω)

FilterD̃(k, ω)

Signals̃(k, ω)

×

=

ω (s−1);

We only plot the frequencies in time, but obviously they exist in space as well. Now, we can
measure the spatial and temporal power spectrum of naturally occurring visual stimuli s̃(k, ω). In
order to maximise the information our responses have about the stimuli, it is obvious that we just

21



need to design our filter to invert the natural power spectrum to give a white noise spectrum! This
means:

D̃(k, ω) =
σL

s̃(k, ω)

Where σL is the white noise power of the linear response. Note this is slightly different to the
solution discussed in the book. First of all, I have neglected discussing phases to simplify things
(Fourier transforms give you complex numbers!). Additionally, the book uses the Fourier transform
of the stimulus autocorrelation function, not the stimulus itself, hence the square root. These are
related by the Wiener-Khinchin theorem, so these results are essentially equivalent. I personally find
the Fourier transform of an autocorrelation function trickier to conceptualise. So bear in mind that
my discussion is aimed at developing intuition, however, if you want to be more formal you should
follow the derivation in the book.

This chapter works through these calculations for naturally occurring stimuli, with some interest-
ing discussions of the results. They also use the additional complication of assuming additive white
noise on top of the measured stimulus, which modifies the results slightly, but conceptually our dis-
cussion still stands. An interesting result is that they use this information-maximisation approach
to derive the retinal ganglion cells’ spatial receptive fields, finding results that match experiment well.

Some of these results are actually very interpretable: for example, in the diagram below, the
receptive field with the dashed line represents the retinal ganglion cell’s receptive field in the presence
of high noise, while the solid line represents its response in the presence of low noise. In the high
noise case, acheiving an accurate encoding by averaging out the noise over a larger region of space
becomes a priority, while in the low noise case, it’s more important to have neighbouring neurons
having non-overlapping neurons, hence the centre-surround structure.
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